吴国钟讲师,硕士生导师

电话:0755 -2603 0544  
邮箱:w.guozhong@sz.tsinghua.edu.cn 办公地址:

所属学科:环境科学与工程

【个人简历】

2012年01月至今 清华大学深圳研究生院 博士后、讲师

2007年09月-2012年01月 天津大学化工学院 工学博士

2009年10月-2010年12月 Cranfield University 联合培养博士

2003年09月-2007年06月 华南理工大学化工学院 工学学士

【研究领域】

(1)石油污染土壤环境评估与治理:采用分子模拟与显微观测技术,研究石油污染物在土壤与沉积物表面及微纳米孔内的分布规律;研究石油污染物在溶剂萃取和电化学等修复过程中的迁移规律;研究高浓度石油污染土壤的绿色高效修复技术。

(2)气体水合物应用技术:研究可燃冰成核、生长与分解机理,优化开采工艺;研究油气输运管道中水合物聚沉机理,开发高效抑制剂;研究基于水合物的气体储存、气体分离、海水淡化、污水处理等技术中的传质与分离机理,开发水合物强化生成技术。

作为项目负责人主持国家自然科学基金、广东省自然科学基金、中国博士后基金、深圳市科技创新计划项目、深圳市海外高层次人才创新创业项目、清华大学深圳研究生院青研基金等科研项目。作为技术骨干参加深海海洋工程装备配套试验平台(国家级)、深圳市近海动力环境演变重点实验室、深圳市南海可燃冰资源开发公共技术服务平台、深水海洋工程配套装备创新链+产业链融合专项等项目。发表SCI学术论文30篇,英文书籍3章。

【研究成果】

   科研项目

[1]深圳孔雀计划技术创新项目:基于环糊精与碳化硅泡沫陶瓷填料的水合物强化生成技术,2017.10-2019.10,100万元,主持。

[2]深圳基础研究项目:沥青质与水合物在油气输送中的共聚机理及抑制技术研究,2016.09-2018.08,30万元,主持。

[3]清华大学深圳研究生院青年基金:原油沥青质与沉积物腐殖质共絮凝过程研究,2014.10-2016.09,15万元,主持。

[4]国家自然科学基金:石油四组分与土壤有机质及无机矿物表面的交互作用:分子模拟与显微观测,2014.01-2016.12,25万元,主持。

[5]广东省自然科学基金:石油四组分在水体沉积物表面的环境行为评价,2013.10-2015.10,3万元,主持。

[6]中国博士后基金:分子模拟石油在土壤有机质及无机矿物表面的吸附与分布,2013.06-2014.01,5万元,主持。

[7]中央引导地方项目:深圳深海海洋工程装备配套试验平台配套项目,2017.11-2018.11,150万元,主持。

[8]深圳经信委平台项目:深圳市南海可燃冰资源开发公共技术服务平台,2016.01-2018.10,500万元,参加。

[9]国家海洋局平台项目:深圳市深海海洋工程装备配套试验平台,2015.10-2018.10,5130万元,参加。

[10]深圳经信委产业链项目:深水海洋工程配套装备(钻井与生产)“创新链+产业链”融合专项, 2015.01-2018.12, 1425万元,参加。

   学术论文(*为通讯作者)

[1]      Meng Q, Chen D, Wu G *, 2018. Microscopic mechanisms for the dynamic wetting of a heavy oil mixture on a rough silica surface. Journal of Physical Chemistry C, article in press, doi: 10.1021/acs.jpcc.8b05784

[2]      Zi M, Chen D, Wu G *, 2018. Molecular dynamics simulation of methane hydrate formation on metal surface with oil. Chemical Engineering Science191 : 253 - 261.

[3]      Hu P, Chen D, Zi M, Wu G *, 2018. Effects of carbon steel corrosion on the methane hydrate formation and dissociation. Fuel 230: 126 - 133.

[4]      Zhu X, Chen D, Zhang Y, Wu G *, 2018. Insights into the oil adsorption and cyclodextrin extraction process on rough silica surface by molecular dynamics simulation. Journal of Physical Chemistry C. 122: 2997 - 3005

[5]      Ji H, Chen D, Zhao C, Wu G *, 2018. Molecular dynamics simulation of methane hydrate formation and dissociation in the clay pores with fatty acids. Journal of Physical Chemistry C 122: 1318 – 1325

[6]      Zi M, Wu G, Li L, Chen D, 2018. Molecular dynamics simulations of methane hydrate formation in model water-in-oil emulsion containing asphaltenes. Journal of Physical Chemistry C122: 23299-23306

[7]      Zhu X, Wu G, Coulon F, Wu L, Chen D, 2018. Correlating asphaltene dimerization with its molecular structure by potential of mean force calculation and data mining. Energy & Fuels 32: 5779 - 5788

[8]      Ji H, Chen D, Wu G *, 2017. Molecular mechanisms for the cyclodextrin-promoted methane hydrate formation in water. Journal of Physical Chemistry C 121: 20967-20975

[9]      Sui H, Dong J, Wu M, Li X, Zhang R, Wu G *, 2017. Continuous hydrogen production by dark fermentation in a foam SiC ceramic packed up-flow anaerobic sludge blanket reactor. Canadian Journal of Chemical Engineering 95: 62-68

[10]  Zi M, Chen D, Ji H, Wu G *, 2016. Effects of asphaltenes on the formation and decomposition of methane hydrate: a molecular dynamics study. Energy & Fuels 30:  5643-5650

[11]  Zhu X, Chen D, Wu G *, 2016. Insights into asphaltene aggregation in the Na-montmorillonite interlayer. Chemosphere 160: 62-70

[12]  Sui H, Li L, Zhu X, Chen D, Wu G *, 2016. Modeling the adsorption of PAH mixture in silica nanopores by molecular dynamic simulation combined with machine learning. Chemosphere 144: 1950-1959

[13]  Ji H, Wu G, Zi M, Chen D, 2016. Microsecond molecular dynamics simulation of methane hydrate formation in humic-acid-amended sodium montmorillonite. Energy & Fuels 30: 7206-7213

[14]  Zhu X, Wu G, Chen D, 2016. Molecular dynamics simulation of cyclodextrin aggregation and extraction of Anthracene from non-aqueous liquid phase. Journal of Hazardous Materials 320: 169-175

[15]  Zhu X, Chen D, Wu G *, 2015. Molecular dynamic simulation of asphaltene co-aggregation with humic acid during oil spill. Chemosphere 138: 412-421

[16]  Sui H, Hua Z, Li X, Li H, Wu G *, 2014. Influence of soil and hydrocarbon properties on the solvent extraction of high-concentration weathered petroleum from contaminated soils. Environmental Science and Pollution Research 21: 5774-5784

[17]  Wu G, Zhu X, Ji H, Chen D, 2015. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface, Chemosphere 119: 242-249

[18]  Wu G, Li X, Kechavarzi C, Sakrabani R, Sui H, Coulon F, 2014. Influence and interactions of multi-factors on the bioavailability of PAHs in compost amended contaminated soils, Chemosphere 107: 43-50

[19]  Wu G, He L, Chen D, 2013. Sorption and distribution of asphaltene, resin, aromatic and saturate fractions of heavy crude oil on quartz surface: molecular dynamic simulation, Chemosphere 92 (11): 1465-1471

[20]  Wu G, Kechavarzi C, Li X, Wu S, Pollard S, Sui H, Coulon F, 2013. Machine learning models for predicting PAHs bioavailability in compost amended soils, Chemical Engineering Journal 223: 747-754

[21]  Wu G, Kechavarzi C, Li X, Sui H, Pollard S, Coulon F, 2013. Influence of mature compost amendment on total and bioavailable polycyclic aromatic hydrocarbons in contaminated soils, Chemosphere 90 (8): 2240-2246 

[22]  Wu G, Coulon F, Yang Y, Li H, Sui H, 2013. Combining solvent extraction and bioremediation for removing weathered petroleum from contaminated soil, Pedosphere, 23 (4): 455-463

[23]  Wu G, Li X, Coulon F, Li H, Lian J, Sui H, 2011. Recycling of solvent used in a solvent extraction of petroleum hydrocarbons contaminated soil, Journal of Hazardous Materials 186 (1): 533-539

【学术兼职】

期刊审稿人:Environmental Science & Technology, Journal of Hazardous Materials, Analytical Chemistry, Chemosphere, Environmental Pollution, Science of the Total Environment, Chemical Engineering Journal, Energy & Fuels

【奖励荣誉】

深圳市海外高层次人才(B类)

深圳市高层次专业人才(后备级)

深圳市南山区领航人才(B类)